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10.

MATH 245 F17, Exam 3 Solutions

Carefully define the following terms: recurrence, Q, A, = (for sets).

A recurrence is a sequence, such that all but finitely many terms are defined in terms of its previous terms.
Given two sequences a,,, b, we say that a, = Q(b,,) to mean that there is some ny € N and there is some M € R
such that Vn > ng, M|ay,| > |b,|. Given sets R, S, the set RAS={z: (x € RAz ¢ S)V(x¢ RAx € S)}.
Given sets R, .S, we say that R = S if they contain the exact same elements.

Carefully define the following terms: disjoint, equicardinal, Distributivity Theorem (for sets), De Morgan’s
Law Theorem (for sets).

Given sets R, S, we say they are disjoint if RNS = (). Given sets R, S, we say they are equicardinal if we
can pair the elements of R with the elements of S. Given sets R,S,T, the Distributivity Theorem states
RN(SUT)=(RNS)U(RNT)and RU(SNT)=(RUS)N(RUT). Given sets R,S,U with R C U and
S C U, De Morgan’s Law states that (RN S)¢ = R°U S° and (RU S)¢ = R°N S°.

Let S = {a,b}. Give a two-clement subset of 22°.

We seek a set, both elements of which are elements of 22° That is, we need a set, both elements of which are
subsets of 2% = {0, {a}, {b}, {a,b}}. Many solutions are possible, such as {{0), {a}}, {0, {b}}}, or {0,{0}}, or
{{{a}}, {{b}}}. Careful notation is critical here.

2. Determine what, if anything, the Master

Suppose that a recurrence satisfies the relation T,, = 4T}, /5 +n
Theorem tells us.
We have a = 4,b =2, and d = log, 4 = 2. Because ¢, = n? = n?, in fact ¢, = @(nd). Hence, the “Middle ¢,”

part of the theorem applies, which tells us that T,, = ©(n?logn).

Let R, S, T be sets, with S C T. Prove that RNS C RNT.

Let x € RNS. Hence z € RAx € S. By simplification, z € S. Because S C T, in fact z € T. By simplification
onz € RNz € S the other way, x € R. Applying conjunction to z € Rand x € T, we get t € RAzxz € T.
Hencez €e RNT.

Let R, S,U be sets, with R C S C U. Prove that S¢ C R°.

Let z € S¢. Hence z € U\ S and thus z € U Ax ¢ S. By simplification twice, we get x € U and = ¢ S. We
now have two cases, depending on whether or not € R: If € R, then (since R C S), € S. But this is
impossible, so this case can’t happen. If instead x ¢ R, then, by conjunction, z € U Az ¢ R. Hence x € U\ R
and so x € R°.

Prove or disprove: For all sets R, S, R xS =S X R.

The statement is false, and needs a counterexample to disprove. This will be specific sets R, .S to falsify the
equality. Many solutions are possible, such as R = {1},5 = {2,3}. Now R x S = {(1,2),(1,3)} while
Sx R=1{(2,1),(3,1)}. To falsify the equality we need a specific element of one set, that is not an element of
the other. Note that (1,2) € R x S but (1,2) ¢ S x R,s0 R x S # S5 x R.

Solve the recurrence given by ag = a3 = 1,a,, = 5a,—1 — 6a,—2 (n > 2).

The characteristic polynomial is 72 = 5r — 6, which rearranges as 0 = r2 — 5r + 6 = (r — 3)(r — 2). Hence the
general solution is a, = A3™ + B2". We now use our initial conditions as 1 = ag = A3° + B2° = A + B, and
1 =a; = A3'+B2' = 3A+2B. This has solution A = —1, B = 2, so our solution is a,, = —3"+2-2" = 2"+l 37,

Let a, = 3n% + 7. Prove that a,, = O(n?).

Part 1 (n? = O(ay,)): Take ng = M =1, and let n > ng = 1. We have [n?| =n? <3n?+7= M|3n?+7| =
Mlay|.

Part 2 (a, = O(n?)): Take ng = 7, M = 4, and let n > ng = 7. We have n? > Tn > 7, 50 |a,| = [3n? + 7| =
3n? +7 < 3n? +n? = 4n? = M|n?|.

Let R, S, T be sets. Prove that R x (SUT) C(Rx S)U (R xT).

Let z € Rx (SUT). Then « = (a,b) where a € R and b € SUT. We have two cases. Case 1: b € S. Then,
(a,b) e R x S,s0 x € RxS. By addition,r e Rx SVa e RxT,sox € (RxS)U(RXT). Case 2: beT.
Then, (a,b) € RxT,sox € RxT. By addition,z € Rx SVa € RxT,s0xz € (Rx S)U(RxT). In either
case, x € (Rx S)U(RxT).



