
MATH 245 F17, Exam 3 Solutions

1. Carefully define the following terms: recurrence, Ω, ∆, = (for sets).

A recurrence is a sequence, such that all but finitely many terms are defined in terms of its previous terms.
Given two sequences an, bn, we say that an = Ω(bn) to mean that there is some n0 ∈ N and there is some M ∈ R
such that ∀n ≥ n0, M |an| ≥ |bn|. Given sets R,S, the set R∆S = {x : (x ∈ R ∧ x /∈ S) ∨ (x /∈ R ∧ x ∈ S)}.
Given sets R,S, we say that R = S if they contain the exact same elements.

2. Carefully define the following terms: disjoint, equicardinal, Distributivity Theorem (for sets), De Morgan’s
Law Theorem (for sets).

Given sets R,S, we say they are disjoint if R ∩ S = ∅. Given sets R,S, we say they are equicardinal if we
can pair the elements of R with the elements of S. Given sets R,S, T , the Distributivity Theorem states
R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∩ T ) and R ∪ (S ∩ T ) = (R ∪ S) ∩ (R ∪ T ). Given sets R,S, U with R ⊆ U and
S ⊆ U , De Morgan’s Law states that (R ∩ S)c = Rc ∪ Sc and (R ∪ S)c = Rc ∩ Sc.

3. Let S = {a, b}. Give a two-element subset of 22
S

.

We seek a set, both elements of which are elements of 22
S

. That is, we need a set, both elements of which are
subsets of 2S = {∅, {a}, {b}, {a, b}}. Many solutions are possible, such as {{∅, {a}}, {∅, {b}}}, or {∅, {∅}}, or
{{{a}}, {{b}}}. Careful notation is critical here.

4. Suppose that a recurrence satisfies the relation Tn = 4Tn/2 + n2. Determine what, if anything, the Master
Theorem tells us.

We have a = 4, b = 2, and d = log2 4 = 2. Because cn = n2 = nd, in fact cn = Θ(nd). Hence, the “Middle cn”
part of the theorem applies, which tells us that Tn = Θ(n2 log n).

5. Let R,S, T be sets, with S ⊆ T . Prove that R ∩ S ⊆ R ∩ T .
Let x ∈ R∩S. Hence x ∈ R∧x ∈ S. By simplification, x ∈ S. Because S ⊆ T , in fact x ∈ T . By simplification
on x ∈ R ∧ x ∈ S the other way, x ∈ R. Applying conjunction to x ∈ R and x ∈ T , we get x ∈ R ∧ x ∈ T .
Hence x ∈ R ∩ T .

6. Let R,S, U be sets, with R ⊆ S ⊆ U . Prove that Sc ⊆ Rc.

Let x ∈ Sc. Hence x ∈ U \ S and thus x ∈ U ∧ x /∈ S. By simplification twice, we get x ∈ U and x /∈ S. We
now have two cases, depending on whether or not x ∈ R: If x ∈ R, then (since R ⊆ S), x ∈ S. But this is
impossible, so this case can’t happen. If instead x /∈ R, then, by conjunction, x ∈ U ∧ x /∈ R. Hence x ∈ U \R
and so x ∈ Rc.

7. Prove or disprove: For all sets R,S, R× S = S ×R.
The statement is false, and needs a counterexample to disprove. This will be specific sets R,S to falsify the
equality. Many solutions are possible, such as R = {1}, S = {2, 3}. Now R × S = {(1, 2), (1, 3)} while
S ×R = {(2, 1), (3, 1)}. To falsify the equality we need a specific element of one set, that is not an element of
the other. Note that (1, 2) ∈ R× S but (1, 2) /∈ S ×R, so R× S 6= S ×R.

8. Solve the recurrence given by a0 = a1 = 1, an = 5an−1 − 6an−2 (n ≥ 2).

The characteristic polynomial is r2 = 5r − 6, which rearranges as 0 = r2 − 5r + 6 = (r − 3)(r − 2). Hence the
general solution is an = A3n + B2n. We now use our initial conditions as 1 = a0 = A30 + B20 = A + B, and
1 = a1 = A31+B21 = 3A+2B. This has solution A = −1, B = 2, so our solution is an = −3n+2·2n = 2n+1−3n.

9. Let an = 3n2 + 7. Prove that an = Θ(n2).

Part 1 (n2 = O(an)): Take n0 = M = 1, and let n ≥ n0 = 1. We have |n2| = n2 ≤ 3n2 + 7 = M |3n2 + 7| =
M |an|.
Part 2 (an = O(n2)): Take n0 = 7,M = 4, and let n ≥ n0 = 7. We have n2 ≥ 7n ≥ 7, so |an| = |3n2 + 7| =
3n2 + 7 ≤ 3n2 + n2 = 4n2 = M |n2|.

10. Let R,S, T be sets. Prove that R× (S ∪ T ) ⊆ (R× S) ∪ (R× T ).

Let x ∈ R × (S ∪ T ). Then x = (a, b) where a ∈ R and b ∈ S ∪ T . We have two cases. Case 1: b ∈ S. Then,
(a, b) ∈ R × S, so x ∈ R × S. By addition, x ∈ R × S ∨ x ∈ R × T , so x ∈ (R × S) ∪ (R × T ). Case 2: b ∈ T .
Then, (a, b) ∈ R× T , so x ∈ R× T . By addition, x ∈ R× S ∨ x ∈ R× T , so x ∈ (R× S) ∪ (R× T ). In either
case, x ∈ (R× S) ∪ (R× T ).


